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Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

Balanced allocations: Background 3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing, load balancing and routing.
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Outline of the presentation
■ Part A: Definition of One-Choice, Two-Choice, and the (1 + β) process.

■ Part B: The Quantile Process

■ Part C: The Mean-Threshold Process

■ Part D: Applications: Outdated information and Noise
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One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].
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Meaning with probability
at least 1 − n−c for constant c > 0.
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(1 + β) process: Definition

(1 + β) process:
Parameter: A probability β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit99] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. Θ(log n/β) for
β < 1 − ϵ for constant ϵ > 0.
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The Quantile Process
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Quantile(δ) Process

Quantile(δ) Process:
Parameter: A quantile δ ∈ {1/n, 2/n, . . . , 1}.
Iteration: For t ≥ 0, sample two bins independently u.a.r. i1 and i2 independently, and
update: {

xt+1
i1

= xt
i1

+ 1 if Rank(xt, i1) > δ · n,

xt+1
i2

= xt
i2

+ 1 otherwise.

W t/n
i1 δt i1
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Quantile(δ) as Two-Choice with incomplete information
We can interpret Quantile(δ) as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the quantile and one
is below.

7 3

δt
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Quantile(δ) as Two-Choice with incomplete information
We can interpret Quantile(δ) as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the quantile and one
is below.

✗ ✗

δt
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Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice, pTwo-Choice =
(

1
n2 , 3

n2 , . . . , 2i−1
n2 , . . . , 2n−2

n2

)
.

■ For Quantile(δ), pQuantile(δ) =
( δ

n
, . . . ,

δ

n︸ ︷︷ ︸
δ·n entries

,
1 + δ

n
, . . . ,

1 + δ

n︸ ︷︷ ︸
(1−δ)·n entries

)
.
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Bin index 𝑖

The Quantile Process 10



The exponential potential function
■ [PTW15] used the two-sided exponential potential

Γt(xt) :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1
n

)
+ c2.

■ This implies E [ Γt ] ≤ c · n for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3 ]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
α

(3 · log n + log c)
]

≥ 1 − n−2.

■ For the (1 + β) process, α = Θ(β).
■ Same proof holds for the Quantile(δ) for constant δ ∈ (0, 1).
■ In [PTW15], α = O(1) so the tightest gaps proved were O(log n).
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Quantile(δ1, . . . , δk) process
■ We can extend the Quantile(δ) process to k quantiles.

■ We can only distinguish two bins if they are in different regions.
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Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).
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Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:
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Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
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■ When α = Ω(1), the potential may not necessarily drop in expectation.

The Quantile Process 14



Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
■ We define the following exponential potential functions:

Φt
0 :=

n∑
i=1

exp
(

α′ ·
(

xt
i − t

n

)+)
, O(log n)

Φt
1 :=

n∑
i=1

exp
(

α′ · (log n)1/3 ·
(

xt
i − t

n
− 2

α′ (log n)1/3
)+)

, O((log n)2/3)

Φt
2 :=

n∑
i=1

exp
(

α′ · (log n)2/3 ·
(

xt
i − t

n
− 4

α′ (log n)1/3
)+)

. O((log n)1/3)
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Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡
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log𝑛

Φ0
𝑡 = 𝒪 𝑛 ⇒ 𝑦1

𝑡 < log𝑛

The Quantile Process 15



Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

log𝑛

The Quantile Process 15



Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

log𝑛

Φ0
𝑡 = 𝒪 𝑛 ⇒ 𝑦𝛿2⋅𝑛

𝑡 < log𝑛 1/3

𝛿2

The Quantile Process 15



Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

log𝑛

𝛿2

The Quantile Process 15



Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

Φ1
𝑡 = 𝒪 𝑛

𝛿2

The Quantile Process 15



Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

Φ1
𝑡 = 𝒪 𝑛 ⇒ 𝑦𝛿1⋅𝑛

𝑡 < 2 log𝑛 1/3

𝛿2𝛿1

The Quantile Process 15



Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

2 ⋅ log𝑛 1/3 + log𝑛 1/3

𝛿2𝛿1

Φ2
𝑡 = 𝒪 𝑛

The Quantile Process 15



Mean-Threshold

Mean-Threshold 16



Threshold process

Threshold(f(n)) Process:
Parameter: A threshold function f(n) ≥ 0.
Iteration: For t ≥ 0, sample two uniform bins i1 and i2 independently, and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

Decentralised

■ Mean-Threshold has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)
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Threshold as Two-Choice with incomplete information
We can interpret Threshold as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.
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Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.

■ Requires 1-bit responses.

■ Or we can completely avoid responses to the allocator.
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Mean-Threshold: Our results
■ For heavily-loaded case, Mean-Threshold achieves w.h.p. Gap(m) = O(log n).

■ For sufficiently large m, Mean-Threshold achieves w.h.p. Gap(m) = Ω(log n).

■ Mean-Threshold uses w.h.p. 2 − ϵ samples per allocation.
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Mean-Threshold: Why the analysis is tricky
■ Let δt be the quantile position of the mean.

■ If δt is very large, say δt = 1 − 1/n, then p becomes very close to the One-Choice
vector :

pMean-Threshold(xt) =
( 1

n
− 1

n2 , . . . ,
1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

■ With this worst-case probability vector, we can only obtain w.h.p. a gap of O(n log n)
using Γt with α = Θ(1/n).

But what happens for Γt with constant α?
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Mean-Threshold: Bad configuration

i1, i2

. . .

a

b

a·(n−2)+b
2

■ There is a very small bias away from overloaded bins.
■ The exponential potential for constant α increases in expectation.
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Mean-Threshold: Recovery from a bad configuration
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A closer look at Γt

■ An analysis similar to [PTW15] shows that

▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[ Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ c · n ] ≤ Γt ·
(

1 − Θ
(

α

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[ Γt+1 | Ft, Γt ≥ c · n ] ≤ Γt ·
(

1 + Θ
(

α2

n

))
.

■ A properly tweaked potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?
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Recovery from a bad configuration (n = 1000)
■ Consider the absolute value and quadratic potentials,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ and Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

·106Number of balls m

Exponential potential
Quadratic potential
Absolute potential
Quantile position

■ As long as ∆t = Ω(n), Υt drops in expectation.
■ As ∆t becomes smaller, δt improves and Γt drops in expectation.
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n
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Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.

■ Introduced two techniques for analysing balanced allocation processes:
▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].
▶ Two-Choice with adversarial noise g ≤ log n : O( g

log g
· log log n) [LS22b].

Several directions for future work:
■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.
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Questions?

More visualisations: tinyurl.com/lss21-visualisations
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Appendix A: Table of results

Process
Lightly Loaded Case m = O(n) Heavily Loaded Case m = ω(n)

Lower Bound Upper Bound Lower Bound Upper Bound

(1 + β), const β ∈ (0, 1) log n
log log n [PTW15] log n

Caching log log n [MPS02] – log n

Packing log n
log log n log n

Twinning log n
log log n log n

Mean-Threshold log n
log log n log n

2-Thinning
(

Θ(
√

log n
log log n )

) √
log n

log log n [FL20] log n
log log n [LS21] log n

Adaptive-2-Thinning
√

log n
log log n [FL20] log n

log log n [LS21] log n
log log n [FGGL21]

Table: Overview of the Gap achieved (with probability at least 1 − n−1), by different allocation
processes considered in this work (and related works).
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Appendix B: Detailed experimental results (I)
n Mean-Threshold Twinning Packing Caching

105

8 : 3%
9 : 32%

10 : 38%
11 : 15%
12 : 6%
13 : 3%
14 : 3%

14 : 2%
15 : 5%
16 : 25%
17 : 28%
18 : 17%
19 : 10%
20 : 8%
21 : 1%
22 : 1%
23 : 3%

12 : 2%
13 : 16%
14 : 20%
15 : 28%
16 : 23%
17 : 5%
18 : 3%
19 : 1%
20 : 2%

3 : 100%

Table: Summary of observed gaps for n ∈ {103, 104, 105} bins and m = 1000 · n number of balls,
for 100 repetitions. The observed gaps are in bold and next to that is the % of runs where this
was observed.
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Appendix B: Detailed experimental results (II)
n (1 + β), for β = 0.5 k = 1 k = 2 k = 3 k = 4 Two-Choice

105

20 : 2%
21 : 7%
22 : 9%
23 : 26%
24 : 27%
25 : 14%
26 : 6%
27 : 3%
28 : 4%
29 : 1%
34 : 1%

8 : 28%
9 : 42%

10 : 18%
11 : 7%
12 : 3%
14 : 1%
15 : 1%

4 : 72%
5 : 26%
6 : 2%

3 : 46%
4 : 54%

3 : 79%
4 : 21% 3 : 100%

Table: Summary of our Experimental Results (m = 1000 · n).
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Appendix C: Recovery from a bad configuration

i1, i2
250 300 350 400 450

Number of balls m

Potential functions

Quadratic potential
Absolute potential

Exponential potential
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Appendix D: Filling framework
■ We analyze a more general framework that includes Packing and Caching [MPS02].

■ We prove an O(log n) gap for these processes.

W t/n
i1 i

W t/n

W t/n
i1 i

W t+1/n
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Appendix E: Completing the Mean-Threshold analysis

Γt

𝑚− 𝑛3 log4 𝑛 𝑚

𝑡

exp(𝒪 𝑛 log 𝑛 )
Base Case
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…
𝑚

Recovery phase

𝑛3 log3 𝑛

𝑡
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𝑛3 log3 𝑛 𝑛3 log3 𝑛
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Γt

𝑐𝑛

𝑚+ 𝑛 log 𝑛𝑚 − 𝑛3 log4 𝑛 𝑠0

…
𝑟1 𝑠1 𝑟2 𝑚

< 𝑛 log𝑛

Stabilization phaseRecovery phase

𝑛3 log3 𝑛

𝑡

2𝑐𝑛

exp(𝒪 𝑛 log 𝑛 )
Base Case

𝑛3 log3 𝑛 𝑛3 log3 𝑛 < 𝑛 log𝑛
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Appendix F: Outdated information
In “Balanced Allocations in Batches: Simplified and Generalized” [LS22a], we study
process with outdated information:

■ In the batched setting balls arrive in batches of size b.
■ For b = n, [BCE+12] proved that Two-Choice has w.h.p. an O(log n) gap.
■ We show that a large class of proceses (including (1 + β) and Quantile(δ) for const

β and δ) have an O(b/n · log n) gap for any b ≥ n.
■ The proof follows by looking at Γ with α = Θ(n/b).
■ By using a second potential Γ̃ with α̃ = Θ(min(1/ log n, n/b)) and conditioning on

Γ = O(n), we prove an O(n/b + log n) gap for b ≥ n.
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■ The proof follows by looking at Γ with α = Θ(n/b).
■ By using a second potential Γ̃ with α̃ = Θ(min(1/ log n, n/b)) and conditioning on

Γ = O(n), we prove an O(n/b + log n) gap for b ≥ n.
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Appendix G: Two-Choice with Adversarial Noise
In “Balanced Allocations with the Choice of Noise” [LS22b], we study Two-Choice with
noise:

■ In the adversarial noise setting, an adversary can perturb the observed loads by some
amount g.

■ Using an interplay between ∆t and Υ, we prove an O(g + log n) gap.
■ Using layered induction of super-exponential potentials we get O( g

log g · log log n) for
g ≤ log n, which is tight.

■ Implies tight bounds for random noise from sub-exponential distributions.
■ Implies tight upper bounds for Two-Choice with batch sizes of b = O(n).
■ In particular, implies Gap(n) = Θ(log n/ log log n) for b = n.
■ And for the setting where the load of a bin is chosen adversarially from the last b steps.
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Appendix H: Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

■ We prove that

■ By induction we get,

E[ Υt+k+1 | Ft ] ≤ Υt − 1
n

·
t+k∑
r=t

E[ ∆r | Ft ] + (k + 1).
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■ By induction we get,
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n

·
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For k = Θ(Υt), for constant fraction of
steps r ∈ [t, t + k], E [ ∆r | Ft ] = O(n).
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