Balanced Allocations under Incomplete Information

$\underline{\text { Dimitrios Los }}^{1}$, Thomas Sauerwald ${ }^{1}$, John Sylvester ${ }^{2}$
${ }^{1}$ University of Cambridge, UK
${ }^{2}$ University of Glasgow, UK

Balanced allocations: Background

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load $\max _{i \in[n]} x_{i}^{m}$, where x^{t} is the load vector after ball t. \Leftrightarrow minimise the gap, where $\operatorname{Gap}(m)=\max _{i \in[n]}\left(x_{i}^{m}-m / n\right)$.

Applications in hashing, load balancing and routing.

Outline of the presentation

Part A: Definition of One-Choice, Two-Choice, and the $(1+\beta)$ process.

- Part B: The Quantile ProcessPart C: The Mean-Threshold Process

Part D: Applications: Outdated information and Noise

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

One-Choice and Two-Сhoice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].
- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m^{\prime}}{n}} \div \log n\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and' place the ball in
the least loaded of the two.

i
In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].

- In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n+\Theta(1)$ [BCSV06].

One-Choice and Two-Choice processes

One-Choice Process:

Iteration: For each $t \geq 0$, sample one bin uniformly at random (u.a.r.) and place the ball there.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\Theta\left(\frac{\log n}{\log \log n}\right)$ [Gon81].

In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\Theta\left(\sqrt{\frac{m}{n} \cdot \log n}\right)$ (e.g. [RS98]).

Two-Choice Process:

Iteration: For each $t \geq 0$, sample two bins independently u.a.r. and place the ball in the least loaded of the two.

- In the lightly-loaded case $(m=n)$, w.h.p. $\operatorname{Gap}(n)=\log _{2} \log n+\Theta(1)$ [KLMadH96, ABKU99].
In the heavily-loaded case $(m \gg n)$, w.h.p. $\operatorname{Gap}(m)=\log _{2} \log n^{k^{\prime}}+\Theta(1)$ [BCSV06].

$(1+\beta)$ process: Definition

$(1+\beta)$ process:
Parameter: A probability $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.

$(1+\beta)$ process: Definition

$(1+\beta)$ process:
Parameter: A probability $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.
[Mit99] interpreted $(1-\beta) / 2$ as the probability of making an erroneous comparison.

$(1+\beta)$ process: Definition

$(1+\beta)$ process:
Parameter: A probability $\beta \in(0,1]$.
Iteration: For each $t \geq 0$, with probability β allocate one ball via the Two-Choice process, otherwise allocate one ball via the One-Choice process.
[Mit99] interpreted $(1-\beta) / 2$ as the probability of making an erroneous comparison.

- In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. $\Theta(\log n / \beta)$ for $\beta<1-\epsilon$ for constant $\epsilon>0$.

The Quantile Process

Quantile (δ) Process

Quantile (δ) Process:
Parameter: A quantile $\delta \in\{1 / n, 2 / n, \ldots, 1\}$.
Iteration: For $t \geq 0$, sample two bins independently u.a.r. i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } \operatorname{Rank}\left(x^{t}, i_{1}\right)>\delta \cdot n \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad & \text { otherwise }\end{cases}
$$

Quantile (δ) Process

Quantile (δ) Process:
Parameter: A quantile $\delta \in\{1 / n, 2 / n, \ldots, 1\}$.
Iteration: For $t \geq 0$, sample two bins independently u.a.r. i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } \operatorname{Rank}\left(x^{t}, i_{1}\right)>\delta \cdot n \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { otherwise }\end{cases}
$$

Quantile (δ) Process

Quantile (δ) Process:
Parameter: A quantile $\delta \in\{1 / n, 2 / n, \ldots, 1\}$.
Iteration: For $t \geq 0$, sample two bins independently u.a.r. i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } \operatorname{Rank}\left(x^{t}, i_{1}\right)>\delta \cdot n \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { otherwise }\end{cases}
$$

Quantile (δ) Process

Quantile (δ) Process:
Parameter: A quantile $\delta \in\{1 / n, 2 / n, \ldots, 1\}$.
Iteration: For $t \geq 0$, sample two bins independently u.a.r. i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad & \text { if } \operatorname{Rank}\left(x^{t}, i_{1}\right)>\delta \cdot n \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Quantile (δ) Process

Quantile (δ) Process:
Parameter: A quantile $\delta \in\{1 / n, 2 / n, \ldots, 1\}$.
Iteration: For $t \geq 0$, sample two bins independently u.a.r. i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad & \text { if } \operatorname{Rank}\left(x^{t}, i_{1}\right)>\delta \cdot n \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Quantile (δ) Process

Quantile (δ) Process:
Parameter: A quantile $\delta \in\{1 / n, 2 / n, \ldots, 1\}$.
Iteration: For $t \geq 0$, sample two bins independently u.a.r. i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad & \text { if } \operatorname{Rank}\left(x^{t}, i_{1}\right)>\delta \cdot n \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad & \text { otherwise }\end{cases}
$$

Quantile (δ) Process

Quantile (δ) Process:

Parameter: A quantile $\delta \in\{1 / n, 2 / n, \ldots, 1\}$.
Iteration: For $t \geq 0$, sample two bins independently u.a.r. i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad & \text { if } \operatorname{Rank}\left(x^{t}, i_{1}\right)>\delta \cdot n \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { otherwise }\end{cases}
$$

Quantile (δ) as Two-Choice with incomplete information

We can interpret Quantile (δ) as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the quantile and one is below.

Quantile (δ) as Two-Choice with incomplete information

We can interpret Quantile (δ) as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the quantile and one is below.

Quantile (δ) as Two-Choice with incomplete information

We can interpret Quantile (δ) as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the quantile and one is below.

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.

- For One-Choice, $p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$.

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.

- For One-Choice, $p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$.
- For Two-Choice, $p_{\text {Two-Choice }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right)$.

Probability allocation vectors

Probability allocation vector p^{t}, where p_{i}^{t} is the prob. of allocating to i-th most loaded bin.

- For One-Choice, $p_{\text {One-Choice }}=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$.
- For Two-Choice, $p_{\text {Two-Choice }}=\left(\frac{1}{n^{2}}, \frac{3}{n^{2}}, \ldots, \frac{2 i-1}{n^{2}}, \ldots, \frac{2 n-2}{n^{2}}\right)$.
- For $\operatorname{Quantile}(\delta), p_{\operatorname{Quantile}(\delta)}=(\underbrace{\frac{\delta}{n}, \ldots, \frac{\delta}{n}}_{\delta \cdot n \text { entries }}, \underbrace{\frac{1+\delta}{n}, \ldots, \frac{1+\delta}{n}}_{(1-\delta) \cdot n \text { entries }})$.

The exponential potential function

[PTW15] used the two-sided exponential potential

The exponential potential function

- [PTW15] used the two-sided exponential potential

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

- [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.

The exponential potential function

- [PTW15] used the two-sided exponential potential

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

- [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.

This implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c \cdot n$ for any $t \geq 0$.

The exponential potential function

- [PTW15] used the two-sided exponential potential

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

[PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.
\square This implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c \cdot n$ for any $t \geq 0$.

- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq c n^{3}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\alpha}(3 \cdot \log n+\log c)\right] \geq 1-n^{-2}
$$

The exponential potential function

- [PTW15] used the two-sided exponential potential

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }} .
$$

- [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.
\square This implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c \cdot n$ for any $t \geq 0$.
- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq c n^{3}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\alpha}(3 \cdot \log n+\log c)\right] \geq 1-n^{-2} .
$$

For the $(1+\beta)$ process, $\alpha=\Theta(\beta)$.

The exponential potential function

- [PTW15] used the two-sided exponential potential

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

- [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.
\square This implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c \cdot n$ for any $t \geq 0$.
- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq c n^{3}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\alpha}(3 \cdot \log n+\log c)\right] \geq 1-n^{-2} .
$$

For the $(1+\beta)$ process, $\alpha=\Theta(\beta)$.

- Same proof holds for the $\operatorname{Quantile}(\delta)$ for constant $\delta \in(0,1)$.

The exponential potential function

- [PTW15] used the two-sided exponential potential

$$
\Gamma^{t}\left(x^{t}\right):=\underbrace{\sum_{i=1}^{n} e^{\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Overload potential }}+\underbrace{\sum_{i=1}^{n} e^{-\alpha\left(x_{i}^{t}-t / n\right)}}_{\text {Underload potential }}
$$

- [PTW15] show that $\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Gamma^{t} \cdot\left(1-\frac{c_{1}}{n}\right)+c_{2}$.
\square This implies $\mathbf{E}\left[\Gamma^{t}\right] \leq c \cdot n$ for any $t \geq 0$.
- By Markov's inequality, we get $\operatorname{Pr}\left[\Gamma^{m} \leq c n^{3}\right] \geq 1-n^{-2}$ which implies

$$
\operatorname{Pr}\left[\operatorname{Gap}(m) \leq \frac{1}{\alpha}(3 \cdot \log n+\log c)\right] \geq 1-n^{-2} .
$$

For the $(1+\beta)$ process, $\alpha=\Theta(\beta)$.

- Same proof holds for the $\operatorname{Quantile}(\delta)$ for constant $\delta \in(0,1)$.

In [PTW15], $\alpha=\mathcal{O}(1)$ so the tightest gaps proved were $\mathcal{O}(\log n)$.

$\operatorname{Quantile}\left(\delta_{1}, \ldots, \delta_{k}\right)$ process

We can extend the $\operatorname{Quantile}(\delta)$ process to k quantiles.

$\operatorname{Quantile}\left(\delta_{1}, \ldots, \delta_{k}\right)$ process

\square We can extend the $\operatorname{Quantile}(\delta)$ process to k quantiles.We can only distinguish two bins if they are in different regions.

$\operatorname{Quantile}\left(\delta_{1}, \ldots, \delta_{k}\right)$ process

\square We can extend the $\operatorname{Quantile}(\delta)$ process to k quantiles.We can only distinguish two bins if they are in different regions.

$\operatorname{Quantile}\left(\delta_{1}, \ldots, \delta_{k}\right)$ process

- We can extend the $\operatorname{Quantile}(\delta)$ process to k quantiles.We can only distinguish two bins if they are in different regions.

Our results

A Quantile $\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

Our results

A $\operatorname{Quantile}\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

Our results

A Quantile $\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

Our results

A Quantile $\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

Our results

A Quantile $\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

Our results

A Quantile $\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

Our results

a Quantile $\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

- Implications:

Our results

a Quantile $\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

- Implications:
- For $k=\Theta(\log \log n)$, we recover the Two-Choice $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.

Our results

A Quantile $\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

- Implications:
- For $k=\Theta(\log \log n)$, we recover the Two-Choice $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- For $(1+\beta)$ with $\beta=1-2^{-0.5(\log n)^{(k-1) / k}}$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.

Our results

A Quantile $\left(\delta_{1}, \ldots, \delta_{k}\right)$ process with uniform quantiles that achieves w.h.p. an $\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$ gap for $k=\mathcal{O}(\log \log n)$.

- Implications:
- For $k=\Theta(\log \log n)$, we recover the Two-Choice $\operatorname{Gap}(m)=\mathcal{O}(\log \log n)$.
- For $(1+\beta)$ with $\beta=1-2^{-0.5(\log n)^{(k-1) / k}}$, w.h.p. $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$.
- Improvements for other processes (d-Thinning, graphical allocations).

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

$$
\delta_{1}:=e^{-\Theta\left((\log n)^{1 / 3}\right)}, \quad \delta_{2}:=e^{-\Theta\left((\log n)^{2 / 3}\right)}, \quad \delta_{3}:=1 / 2
$$

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

$$
\delta_{1}:=e^{-\Theta\left((\log n)^{1 / 3}\right)}, \quad \delta_{2}:=e^{-\Theta\left((\log n)^{2 / 3}\right)}, \quad \delta_{3}:=1 / 2
$$

- We define the following exponential potential functions:
$\Phi_{0}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot\left(x_{i}^{t}-\frac{t}{n}\right)^{+}\right)$,

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

$$
\delta_{1}:=e^{-\Theta\left((\log n)^{1 / 3}\right)}, \quad \delta_{2}:=e^{-\Theta\left((\log n)^{2 / 3}\right)}, \quad \delta_{3}:=1 / 2
$$

- We define the following exponential potential functions:

$$
\begin{aligned}
& \Phi_{0}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot\left(x_{i}^{t}-\frac{t}{n}\right)^{+}\right), \\
& \Phi_{1}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{1 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right),
\end{aligned}
$$

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

$$
\delta_{1}:=e^{-\Theta\left((\log n)^{1 / 3}\right)}, \quad \delta_{2}:=e^{-\Theta\left((\log n)^{2 / 3}\right)}, \quad \delta_{3}:=1 / 2
$$

- We define the following exponential potential functions:

$$
\begin{aligned}
& \Phi_{0}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot\left(x_{i}^{t}-\frac{t}{n}\right)^{+}\right), \\
& \Phi_{1}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{1 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right), \\
& \Phi_{2}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{2 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{4}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right) .
\end{aligned}
$$

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

$$
\delta_{1}:=e^{-\Theta\left((\log n)^{1 / 3}\right)}, \quad \delta_{2}:=e^{-\Theta\left((\log n)^{2 / 3}\right)}, \quad \delta_{3}:=1 / 2
$$

- We define the following exponential potential functions:

$$
\begin{aligned}
& \Phi_{0}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot\left(x_{i}^{t}-\frac{t}{n}\right)^{+}\right) \\
& \Phi_{1}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{1 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right) \\
& \Phi_{2}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{2 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{4}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right)
\end{aligned}
$$

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

$$
\delta_{1}:=e^{-\Theta\left((\log n)^{1 / 3}\right)}, \quad \delta_{2}:=e^{-\Theta\left((\log n)^{2 / 3}\right)}, \quad \delta_{3}:=1 / 2
$$

- We define the following exponential potential functions:

$$
\begin{aligned}
& \Phi_{0}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot\left(x_{i}^{t}-\frac{t}{n}\right)^{+}\right) \\
& \Phi_{1}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{1 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right) \\
& \Phi_{2}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{2 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{4}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right)
\end{aligned}
$$

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

$$
\delta_{1}:=e^{-\Theta\left((\log n)^{1 / 3}\right)}, \quad \delta_{2}:=e^{-\Theta\left((\log n)^{2 / 3}\right)}, \quad \delta_{3}:=1 / 2
$$

- We define the following exponential potential functions:

$$
\begin{aligned}
& \Phi_{0}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot\left(x_{i}^{t}-\frac{t}{n}\right)^{+}\right), \\
& \Phi_{1}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{1 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right), \\
& \Phi_{2}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{2 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{4}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right) .
\end{aligned}
$$

$$
\mathcal{O}\left((\log n)^{2 / 3}\right)
$$

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

$$
\delta_{1}:=e^{-\Theta\left((\log n)^{1 / 3}\right)}, \quad \delta_{2}:=e^{-\Theta\left((\log n)^{2 / 3}\right)}, \quad \delta_{3}:=1 / 2
$$

- We define the following exponential potential functions:

$$
\begin{aligned}
\Phi_{0}^{t} & :=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot\left(x_{i}^{t}-\frac{t}{n}\right)^{+}\right) \\
\Phi_{1}^{t} & :=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{1 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right) \\
\Phi_{2}^{t} & :=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{2 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{4}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right)
\end{aligned}
$$

$$
\mathcal{O}\left((\log n)^{2 / 3}\right)
$$

- When $\alpha=\Omega(1)$, the potential may not necessarily drop in expectation.

Analysis using super-exponential potential functions

For $k=3$, we define the quantile process which achives $\mathcal{O}\left((\log n)^{1 / 3}\right)$ gap:

$$
\delta_{1}:=e^{-\Theta\left((\log n)^{1 / 3}\right)}, \quad \delta_{2}:=e^{-\Theta\left((\log n)^{2 / 3}\right)}, \quad \delta_{3}:=1 / 2
$$

- We define the following exponential potential functions:

$$
\begin{aligned}
& \Phi_{0}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot\left(x_{i}^{t}-\frac{t}{n}\right)^{+}\right), \\
& \Phi_{1}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{1 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{2}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right), \\
& \Phi_{2}^{t}:=\sum_{i=1}^{n} \exp \left(\alpha^{\prime} \cdot(\log n)^{2 / 3} \cdot\left(x_{i}^{t}-\frac{t}{n}-\frac{4}{\alpha^{\prime}}(\log n)^{1 / 3}\right)^{+}\right) .
\end{aligned}
$$

$$
\mathcal{O}\left((\log n)^{2 / 3}\right)
$$

- When $\alpha=\Omega(1)$, the potential may not necessarily drop in expectation.
- We prove that when $y_{\delta_{3-j} \cdot n}^{t}<\frac{2}{\alpha^{\prime}} j(\log n)^{1 / 3}$, then

$$
\mathbf{E}\left[\Phi_{j}^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Phi_{j}^{t} \cdot\left(1-\frac{1}{n}\right)+2
$$

Proving $\operatorname{Gap}(m)=\mathcal{O}\left(k \cdot(\log n)^{1 / k}\right)$

Mean-Threshold

Threshold process

Threshold $(f(n))$ Process:
Parameter: A threshold function $f(n) \geq 0$.
Iteration: For $t \geq 0$, sample two uniform bins i_{1} and i_{2} independently, and update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)
\end{array}\right.
$$

Threshold process

Threshold $(f(n))$ Process:
Parameter: A threshold function $f(n) \geq 0$.
Iteration: For $t \geq 0$, sample two uniform bins i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)\end{cases}
$$

Decentralised

Threshold process

Threshold $(f(n))$ Process:
Parameter: A threshold function $f(n) \geq 0$.
Iteration: For $t \geq 0$, sample two uniform bins i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)\end{cases}
$$

- Mean-Threshold has $f(n)=0$.

Threshold process

Threshold $(f(n))$ Process:
Parameter: A threshold function $f(n) \geq 0$.
Iteration: For $t \geq 0$, sample two uniform bins i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)\end{cases}
$$

- Mean-Threshold has $f(n)=0$.

Threshold process

Threshold $(f(n))$ Process:

Parameter: A threshold function $f(n) \geq 0$.
Iteration: For $t \geq 0$, sample two uniform bins i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n), \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n) .\end{cases}
$$

- Mean-Threshold has $f(n)=0$.

Threshold process

Threshold $(f(n))$ Process:

Parameter: A threshold function $f(n) \geq 0$.
Iteration: For $t \geq 0$, sample two uniform bins i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n), \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n) .\end{cases}
$$

- Mean-Threshold has $f(n)=0$.

Threshold process

Threshold $(f(n))$ Process:
Parameter: A threshold function $f(n) \geq 0$.
Iteration: For $t \geq 0$, sample two uniform bins i_{1} and i_{2} independently, and update:

$$
\begin{cases}x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 & \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\ x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 & \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)\end{cases}
$$

- Mean-Threshold has $f(n)=0$.
- [FGG21] found the asymptotically optimal threshold in the lightly-loaded case.

Threshold process

Threshold $(f(n))$ Process:
Parameter: A threshold function $f(n) \geq 0$.
Iteration: For $t \geq 0$, sample two uniform bins i_{1} and i_{2} independently, and update:

$$
\left\{\begin{array}{l}
x_{i_{1}}^{t+1}=x_{i_{1}}^{t}+1 \quad \text { if } x_{i_{1}}^{t}<\frac{t}{n}+f(n) \\
x_{i_{2}}^{t+1}=x_{i_{2}}^{t}+1 \quad \text { if } x_{i_{1}}^{t} \geq \frac{t}{n}+f(n)
\end{array}\right.
$$

- Mean-Threshold has $f(n)=0$.
- [FGG21] found the asymptotically optimal threshold in the lightly-loaded case.
[IK05, FL20] analysed a d-sample version for the lightly-loaded case.

Threshold as Two-Choice with incomplete information

We can interpret Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

Threshold as Two-Choice with incomplete information

We can interpret Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

Threshold as Two-Choice with incomplete information

We can interpret Threshold as an instance of the Two-Choice process, where we are only able to compare the loads of the two sampled bins if one is above the threshold and one is below.

Mean-Threshold: Message/sample efficiency

Mean-Threshold does not require communication of the load.

Mean-Threshold: Message/sample efficiency

\square Mean-Threshold does not require communication of the load.
\square Requires 1-bit responses.

Mean-Threshold: Message/sample efficiency

- Mean-Threshold does not require communication of the load.
- Requires 1-bit responses.

Mean-Threshold: Message/sample efficiency

- Mean-Threshold does not require communication of the load.
\square Requires 1-bit responses.

Mean-Threshold: Message/sample efficiency

- Mean-Threshold does not require communication of the load.
\square Requires 1-bit responses.

Mean-Threshold: Message/sample efficiency

- Mean-Threshold does not require communication of the load.
\square Requires 1-bit responses.

Mean-Threshold: Message/sample efficiency

- Mean-Threshold does not require communication of the load.
\square Requires 1-bit responses.
- Or we can completely avoid responses to the allocator.

Mean-Threshold: Message/sample efficiency

- Mean-Threshold does not require communication of the load.
\square Requires 1-bit responses.
- Or we can completely avoid responses to the allocator.

Mean-Threshold: Message/sample efficiency

- Mean-Threshold does not require communication of the load.
\square Requires 1-bit responses.
- Or we can completely avoid responses to the allocator.

Mean-Threshold: Our results

For heavily-loaded case, Mean-Threshold achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.

Mean-Threshold: Our results

For heavily-loaded case, Mean-Threshold achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.
For sufficiently large m, Mean-Threshold achieves w.h.p. $\operatorname{Gap}(m)=\Omega(\log n)$.

Mean-Threshold: Our results

- For heavily-loaded case, Mean-Threshold achieves w.h.p. $\operatorname{Gap}(m)=\mathcal{O}(\log n)$.
- For sufficiently large m, Mean-Threshold achieves w.h.p. $\operatorname{Gap}(m)=\Omega(\log n)$.
- Mean-Threshold uses w.h.p. $2-\epsilon$ samples per allocation.

Mean-Threshold: Why the analysis is tricky

Let δ^{t} be the quantile position of the mean.

Mean-Threshold: Why the analysis is tricky

Let δ^{t} be the quantile position of the mean.
If δ^{t} is very large, say $\delta^{t}=1-1 / n$, then p becomes very close to the One-Choice vector :

$$
p_{\text {Mean-Threshold }}\left(x^{t}\right)=(\underbrace{\frac{1}{n}-\frac{1}{n^{2}}, \ldots, \frac{1}{n}-\frac{1}{n^{2}}}_{(n-1) \text { entries }}, \frac{2}{n}-\frac{1}{n^{2}}) .
$$

Mean-Threshold: Why the analysis is tricky

Let δ^{t} be the quantile position of the mean.
\square If δ^{t} is very large, say $\delta^{t}=1-1 / n$, then p becomes very close to the One-Choice vector :

$$
p_{\text {Mean-Threshold }}\left(x^{t}\right)=(\underbrace{\frac{1}{n}-\frac{1}{n^{2}}, \ldots, \frac{1}{n}-\frac{1}{n^{2}}}_{(n-1) \text { entries }}, \frac{2}{n}-\frac{1}{n^{2}}) .
$$

- With this worst-case probability vector, we can only obtain w.h.p. a gap of $\mathcal{O}(n \log n)$ using Γ^{t} with $\alpha=\Theta(1 / n)$.

Mean-Threshold: Why the analysis is tricky

Let δ^{t} be the quantile position of the mean.
If δ^{t} is very large, say $\delta^{t}=1-1 / n$, then p becomes very close to the One-Choice vector :

$$
p_{\text {Mean-Threshold }}\left(x^{t}\right)=(\underbrace{\frac{1}{n}-\frac{1}{n^{2}}, \ldots, \frac{1}{n}-\frac{1}{n^{2}}}_{(n-1) \text { entries }}, \frac{2}{n}-\frac{1}{n^{2}}) .
$$

- With this worst-case probability vector, we can only obtain w.h.p. a gap of $\mathcal{O}(n \log n)$ using Γ^{t} with $\alpha=\Theta(1 / n)$.

But what happens for Γ^{t} with constant α ?

Mean-Threshold: Bad configuration

There is a very small bias away from overloaded bins.
\square The exponential potential for constant α increases in expectation.

Mean-Threshold: Recovery from a bad configuration

A closer look at Γ^{t}

An analysis similar to [PTW15] shows that

A closer look at Γ^{t}

An analysis similar to [PTW15] shows that
> (Good step) If $\delta^{t} \in(\epsilon, 1-\epsilon)$ for const $\epsilon>0$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t},\left\{\delta^{t} \in(\epsilon, 1-\epsilon)\right\}, \Gamma^{t} \geq c \cdot n\right] \leq \Gamma^{t} \cdot\left(1-\Theta\left(\frac{\alpha}{n}\right)\right) .
$$

A closer look at Γ^{t}

An analysis similar to [PTW15] shows that
> (Good step) If $\delta^{t} \in(\epsilon, 1-\epsilon)$ for const $\epsilon>0$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t},\left\{\delta^{t} \in(\epsilon, 1-\epsilon)\right\}, \Gamma^{t} \geq c \cdot n\right] \leq \Gamma^{t} \cdot\left(1-\Theta\left(\frac{\alpha}{n}\right)\right) .
$$

- (Bad step) If $\delta^{t} \notin(\epsilon, 1-\epsilon)$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Gamma^{t} \geq c \cdot n\right] \leq \Gamma^{t} \cdot\left(1+\Theta\left(\frac{\alpha^{2}}{n}\right)\right)
$$

A closer look at Γ^{t}

- An analysis similar to [PTW15] shows that
$>$ (Good step) If $\delta^{t} \in(\epsilon, 1-\epsilon)$ for const $\epsilon>0$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t},\left\{\delta^{t} \in(\epsilon, 1-\epsilon)\right\}, \Gamma^{t} \geq c \cdot n\right] \leq \Gamma^{t} \cdot\left(1-\Theta\left(\frac{\alpha}{n}\right)\right) .
$$

- (Bad step) If $\delta^{t} \notin(\epsilon, 1-\epsilon)$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Gamma^{t} \geq c \cdot n\right] \leq \Gamma^{t} \cdot\left(1+\Theta\left(\frac{\alpha^{2}}{n}\right)\right) .
$$

- A properly tweaked potential function drops in expectation for any interval with constant fraction of good steps.

A closer look at Γ^{t}

- An analysis similar to [PTW15] shows that
$\Rightarrow($ Good step $)$ If $\delta^{t} \in(\epsilon, 1-\epsilon)$ for const $\epsilon>0$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t},\left\{\delta^{t} \in(\epsilon, 1-\epsilon)\right\}, \Gamma^{t} \geq c \cdot n\right] \leq \Gamma^{t} \cdot\left(1-\Theta\left(\frac{\alpha}{n}\right)\right)
$$

- (Bad step) If $\delta^{t} \notin(\epsilon, 1-\epsilon)$, then

$$
\mathbf{E}\left[\Gamma^{t+1} \mid \mathfrak{F}^{t}, \Gamma^{t} \geq c \cdot n\right] \leq \Gamma^{t} \cdot\left(1+\Theta\left(\frac{\alpha^{2}}{n}\right)\right)
$$

- A properly tweaked potential function drops in expectation for any interval with constant fraction of good steps.

How can we prove that there is a constant fraction of good steps?

Recovery from a bad configuration $(n=1000)$

- Consider the absolute value and quadratic potentials,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| \quad \text { and } \quad \Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}
$$

Recovery from a bad configuration $(n=1000)$

- Consider the absolute value and quadratic potentials,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| \quad \text { and } \quad \Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}
$$

\square As long as $\Delta^{t}=\Omega(n), \Upsilon^{t}$ drops in expectation.

Recovery from a bad configuration $(n=1000)$

- Consider the absolute value and quadratic potentials,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| \quad \text { and } \quad \Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}
$$

\square As long as $\Delta^{t}=\Omega(n), \Upsilon^{t}$ drops in expectation.
As Δ^{t} becomes smaller, δ^{t} improves and Γ^{t} drops in expectation.

Recovery from a bad configuration $(n=1000)$

- Consider the absolute value and quadratic potentials,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| \quad \text { and } \quad \Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}
$$

First steps of recovery
As long as $\Delta^{t}=\Omega(n), \Upsilon^{t}$ drops in expectation.
As Δ^{t} becomes smaller, δ^{t} improves and Γ^{t} drops in expectation.

Conclusion

Summary of results:
Analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1.

Conclusion

Summary of results:
analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1 .
Introduced two techniques for analysing balanced allocation processes:

Conclusion

Summary of results:
analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1 .

- Introduced two techniques for analysing balanced allocation processes:
- Layered induction over super-exponential potentials.

Conclusion

Summary of results:
Analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1 .

- Introduced two techniques for analysing balanced allocation processes:
- Layered induction over super-exponential potentials.
- Interplay between the absolute value and quadratic potentials.

Conclusion

Summary of results:
Analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1 .

- Introduced two techniques for analysing balanced allocation processes:
$>$ Layered induction over super-exponential potentials.
$>$ Interplay between the absolute value and quadratic potentials.
- Further applications of the presented techniques:
\Rightarrow Balls allocated in batches of $b \geq n$ balls : $\mathcal{O}(b / n+\log n)$ gap for Two-Choice, $(1+\beta)$ and Quantile (δ) [LS22a].

Conclusion

Summary of results:
Analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1 .
Introduced two techniques for analysing balanced allocation processes:
$>$ Layered induction over super-exponential potentials.
$>$ Interplay between the absolute value and quadratic potentials.

- Further applications of the presented techniques:
\Rightarrow Balls allocated in batches of $b \geq n$ balls : $\mathcal{O}(b / n+\log n)$ gap for Two-Choice, $(1+\beta)$ and $\operatorname{Quantile}(\delta)$ [LS22a].
$>$ Two-Choice with adversarial noise $g \leq \log n: \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)[$ LS22b].

Conclusion

Summary of results:
Analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1 .
Introduced two techniques for analysing balanced allocation processes:

- Layered induction over super-exponential potentials.
- Interplay between the absolute value and quadratic potentials.
- Further applications of the presented techniques:
- Balls allocated in batches of $b \geq n$ balls : $\mathcal{O}(b / n+\log n)$ gap for Two-Choice, $(1+\beta)$ and $\operatorname{Quantile}(\delta)$ [LS22a].
- Two-Choice with adversarial noise $g \leq \log n: \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$ [LS22b].

Several directions for future work:

Conclusion

Summary of results:
Analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1 .

- Introduced two techniques for analysing balanced allocation processes:
- Layered induction over super-exponential potentials.
- Interplay between the absolute value and quadratic potentials.
- Further applications of the presented techniques:
- Balls allocated in batches of $b \geq n$ balls : $\mathcal{O}(b / n+\log n)$ gap for Two-Choice, $(1+\beta)$ and $\operatorname{Quantile}(\delta)$ [LS22a].
- Two-Choice with adversarial noise $g \leq \log n: \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$ [LS22b].

Several directions for future work:

- Investigating the robustness of Mean-Threshold.

Conclusion

Summary of results:
Analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1 .
Introduced two techniques for analysing balanced allocation processes:
$>$ Layered induction over super-exponential potentials.
$>$ Interplay between the absolute value and quadratic potentials.

- Further applications of the presented techniques:
\Rightarrow Balls allocated in batches of $b \geq n$ balls : $\mathcal{O}(b / n+\log n)$ gap for Two-Choice, $(1+\beta)$ and $\operatorname{Quantile}(\delta)$ [LS22a].
\Rightarrow Two-Choice with adversarial noise $g \leq \log n: \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$ [LS22b].
Several directions for future work:
- Investigating the robustness of Mean-Threshold.

Loosening the fully random hash function assumption.

Conclusion

Summary of results:
Analysed various processes including k-Quantile, Mean-Threshold and $(1+\beta)$ for β close to 1 .
Introduced two techniques for analysing balanced allocation processes:

- Layered induction over super-exponential potentials.
- Interplay between the absolute value and quadratic potentials.
- Further applications of the presented techniques:
- Balls allocated in batches of $b \geq n$ balls : $\mathcal{O}(b / n+\log n)$ gap for Two-Choice, $(1+\beta)$ and $\operatorname{Quantile}(\delta)$ [LS22a].
- Two-Choice with adversarial noise $g \leq \log n: \mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$ [LS22b].

Several directions for future work:

- Investigating the robustness of Mean-Threshold.

Loosening the fully random hash function assumption.

- Analysing these processes in the graphical setting.

Questions?

More visualisations: tinyurl.com/lss21-visualisations

Questions?

More visualisations: tinyurl.com/lss21-visualisations

Appendix

Appendix A: Table of results

Process	Lightly Loaded Case $m=\mathcal{O}(n)$		Heavily Loaded Case $m=\omega(n)$	
	Lower Bound	Upper Bound	Lower Bound	Upper Bound
$(1+\beta)$, const $\beta \in(0,1)$		[PTW15]	$\log n$	
Caching	$\log 1$	[MPS02]	-	$\log n$
Packing		$\frac{n}{\log n}$	$\log n$	
Twinning		$\frac{n}{\log n}$	$\log n$	
Mean-Threshold	$\frac{\log n}{\log \log n}$		$\log n$	
2-Thinning $\left(\Theta\left(\sqrt{\frac{\log n}{\log \log n}}\right)\right)$		$\frac{n}{n}$ [FL20]	$\frac{\log n}{\log \log n} \quad[\mathrm{LS} 21]$	$\log n$
Adaptive-2-THinning		$\frac{n}{n}$ [FL20]	$\frac{\log n}{\log \log n} \quad[\mathrm{LS} 21]$	$\frac{\log n}{\log \log n}$ [FGGL21]

Table: Overview of the Gap achieved (with probability at least $1-n^{-1}$), by different allocation processes considered in this work (and related works).

Appendix B: Detailed experimental results (I)

n	MEAN-THRESHOLD	TwINNING	PACKING	CACHING
		$14: 2 \%$	$12: 2 \%$	
	$8: 3 \%$	$\mathbf{1 5}: 5 \%$	$\mathbf{1 3}: 16 \%$	
	$\mathbf{9}: 32 \%$	$\mathbf{1 6}: 25 \%$	$\mathbf{1 4}: 20 \%$	
	$\mathbf{1 0}: 38 \%$	$\mathbf{1 7}: 28 \%$	$\mathbf{1 5}: 28 \%$	
10^{5}	$\mathbf{1 1}: 15 \%$	$\mathbf{1 8}: 17 \%$	$\mathbf{1 6}: 23 \%$	$\mathbf{3}: 100 \%$
	$12: 6 \%$	$\mathbf{1 9}: 10 \%$	$17: 5 \%$	
	$13: 3 \%$	$20: 8 \%$	$18: 3 \%$	
	$14: 3 \%$	$21: 1 \%$	$19: 1 \%$	
		$22: 1 \%$	$20: 2 \%$	

Table: Summary of observed gaps for $n \in\left\{10^{3}, 10^{4}, 10^{5}\right\}$ bins and $m=1000 \cdot n$ number of balls, for 100 repetitions. The observed gaps are in bold and next to that is the $\%$ of runs where this was observed.

Appendix B: Detailed experimental results (II)

n	$(1+\beta)$, for $\beta=0.5$	$k=1$	$k=2$	$k=3$	$k=4$	Two-Choice
10^{5}	20: 2%					
	21: 7\%					
	22: 9\%	8: 28%				
	23: 26%	9: 42%				
	24: 27%	10: 18%	4: 72\%			
	25: 14%	11: 7\%	5: 26%	3: 46% 4:54\%	3: 79% 4: 21%	3: 100\%
	26: 6\%	12: 3\%	6: 2%			
	27: 3\%	14: 1\%				
	28: 4\%	15: 1\%				
	$\begin{aligned} & 29: 1 \% \\ & 34: 1 \% \end{aligned}$					

Table: Summary of our Experimental Results $(m=1000 \cdot n)$.

Appendix C: Recovery from a bad configuration

Appendix D: Filling framework

We analyze a more general framework that includes Packing and Caching [MPS02].

Appendix D: Filling framework

- We analyze a more general framework that includes Packing and Caching [MPS02].
\square We prove an $\mathcal{O}(\log n)$ gap for these processes.

Appendix D: Filling framework

- We analyze a more general framework that includes Packing and Caching [MPS02].
\square We prove an $\mathcal{O}(\log n)$ gap for these processes.

Appendix D: Filling framework

- We analyze a more general framework that includes Packing and Caching [MPS02].
- We prove an $\mathcal{O}(\log n)$ gap for these processes.

Appendix E: Completing the Mean-Threshold analysis

Appendix F: Outdated information

In "Balanced Allocations in Batches: Simplified and Generalized" [LS22a], we study process with outdated information:

Appendix F: Outdated information

In "Balanced Allocations in Batches: Simplified and Generalized" [LS22a], we study process with outdated information:

- In the batched setting balls arrive in batches of size b.

Appendix F: Outdated information

In "Balanced Allocations in Batches: Simplified and Generalized" [LS22a], we study process with outdated information:
In the batched setting balls arrive in batches of size b.
For $b=n,\left[\mathrm{BCE}^{+} 12\right]$ proved that Two-Choice has w.h.p. an $\mathcal{O}(\log n)$ gap.

Appendix F: Outdated information

In "Balanced Allocations in Batches: Simplified and Generalized" [LS22a], we study process with outdated information:
In the batched setting balls arrive in batches of size b.

- For $b=n,\left[\mathrm{BCE}^{+} 12\right]$ proved that Two-Choice has w.h.p. an $\mathcal{O}(\log n)$ gap.
- We show that a large class of proceses (including $(1+\beta)$ and $\operatorname{Quantile}(\delta)$ for const β and δ) have an $\mathcal{O}(b / n \cdot \log n)$ gap for any $b \geq n$.

Appendix F: Outdated information

In "Balanced Allocations in Batches: Simplified and Generalized" [LS22a], we study process with outdated information:
In the batched setting balls arrive in batches of size b.

- For $b=n,\left[\mathrm{BCE}^{+} 12\right]$ proved that Two-Choice has w.h.p. an $\mathcal{O}(\log n)$ gap.
- We show that a large class of proceses (including $(1+\beta)$ and $\operatorname{Quantile}(\delta)$ for const β and δ) have an $\mathcal{O}(b / n \cdot \log n)$ gap for any $b \geq n$.
- The proof follows by looking at Γ with $\alpha=\Theta(n / b)$.

Appendix F: Outdated information

In "Balanced Allocations in Batches: Simplified and Generalized" [LS22a], we study process with outdated information:
In the batched setting balls arrive in batches of size b.
For $b=n,\left[\mathrm{BCE}^{+} 12\right]$ proved that Two-Choice has w.h.p. an $\mathcal{O}(\log n)$ gap.

- We show that a large class of proceses (including $(1+\beta)$ and $\operatorname{Quantile}(\delta)$ for const β and δ) have an $\mathcal{O}(b / n \cdot \log n)$ gap for any $b \geq n$.
- The proof follows by looking at Γ with $\alpha=\Theta(n / b)$.
- By using a second potential $\tilde{\Gamma}$ with $\tilde{\alpha}=\Theta(\min (1 / \log n, n / b))$ and conditioning on $\Gamma=\mathcal{O}(n)$, we prove an $\mathcal{O}(n / b+\log n)$ gap for $b \geq n$.

Appendix G: Two-Choice with Adversarial Noise

In "Balanced Allocations with the Choice of Noise" [LS22b], we study Two-Choice with noise:

Appendix G: Two-Choice with Adversarial Noise

In "Balanced Allocations with the Choice of Noise" [LS22b], we study Two-Choice with noise:
In the adversarial noise setting, an adversary can perturb the observed loads by some amount g.

Appendix G: Two-Choice with Adversarial Noise

In "Balanced Allocations with the Choice of Noise" [LS22b], we study Two-Choice with noise:
In the adversarial noise setting, an adversary can perturb the observed loads by some amount g.
Using an interplay between Δ^{t} and Υ, we prove an $\mathcal{O}(g+\log n)$ gap.

Appendix G: Two-Сноісе with Adversarial Noise

In "Balanced Allocations with the Choice of Noise" [LS22b], we study Two-Choice with noise:

- In the adversarial noise setting, an adversary can perturb the observed loads by some amount g.
Using an interplay between Δ^{t} and Υ, we prove an $\mathcal{O}(g+\log n)$ gap.
Using layered induction of super-exponential potentials we get $\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$ for $g \leq \log n$, which is tight.

Appendix G: Two-Choice with Adversarial Noise

In "Balanced Allocations with the Choice of Noise" [LS22b], we study Two-Choice with noise:

- In the adversarial noise setting, an adversary can perturb the observed loads by some amount g.
Using an interplay between Δ^{t} and Υ, we prove an $\mathcal{O}(g+\log n)$ gap.
Using layered induction of super-exponential potentials we get $\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$ for $g \leq \log n$, which is tight.
- Implies tight bounds for random noise from sub-exponential distributions.

Appendix G: Two-Choice with Adversarial Noise

In "Balanced Allocations with the Choice of Noise" [LS22b], we study Two-Choice with noise:

- In the adversarial noise setting, an adversary can perturb the observed loads by some amount g.
Using an interplay between Δ^{t} and Υ, we prove an $\mathcal{O}(g+\log n)$ gap.
Using layered induction of super-exponential potentials we get $\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$ for $g \leq \log n$, which is tight.
- Implies tight bounds for random noise from sub-exponential distributions.
- Implies tight upper bounds for Two-Choice with batch sizes of $b=\mathcal{O}(n)$.

Appendix G: Two-Choice with Adversarial Noise

In "Balanced Allocations with the Choice of Noise" [LS22b], we study Two-Choice with noise:

- In the adversarial noise setting, an adversary can perturb the observed loads by some amount g.
Using an interplay between Δ^{t} and Υ, we prove an $\mathcal{O}(g+\log n)$ gap.
Using layered induction of super-exponential potentials we get $\mathcal{O}\left(\frac{g}{\log g} \cdot \log \log n\right)$ for $g \leq \log n$, which is tight.
Implies tight bounds for random noise from sub-exponential distributions.
Implies tight upper bounds for Two-Choice with batch sizes of $b=\mathcal{O}(n)$.
- In particular, implies $\operatorname{Gap}(n)=\Theta(\log n / \log \log n)$ for $b=n$.
- And for the setting where the load of a bin is chosen adversarially from the last b steps.

Appendix H: Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right|
$$

Appendix H: Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| .
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.

Appendix H: Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right|
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.
\square Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2} .
$$

Appendix H: Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| .
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.
Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2} .
$$

- We prove that

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\Delta^{t}+1
$$

Appendix H: Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| .
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.
Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}
$$

- We prove that

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\Delta^{t}+1 .
$$

By induction we get,

$$
\mathbf{E}\left[\Upsilon^{t+k+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\frac{1}{n} \cdot \sum_{r=t}^{t+k} \mathbf{E}\left[\Delta^{r} \mid \mathfrak{F}^{t}\right]+(k+1)
$$

Appendix H: Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| .
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.
Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2}
$$

- We prove that

$$
\mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\Delta^{t}+1 .
$$

By induction we get,

$$
\mathbf{E}\left[\Upsilon^{t+k+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\frac{1}{n} \cdot \sum_{r=t}^{t+k} \mathbf{E}\left[\Delta^{r} \mid \mathfrak{F}^{t}\right]+(k+1)
$$

Appendix H: Mean quantile stabilisation

- Consider the absolute value potential,

$$
\Delta^{t}:=\sum_{i=1}^{n}\left|x_{i}^{t}-\frac{t}{n}\right| .
$$

If $\Delta^{t}=\mathcal{O}(n)$, then $\delta^{t} \in(\epsilon, 1-\epsilon)$ w.h.p. for a constant fraction of the next $\Theta(n)$ steps.
\square Consider the quadratic potential,

$$
\Upsilon^{t}:=\sum_{i=1}^{n}\left(x_{i}^{t}-\frac{t}{n}\right)^{2} .
$$

- We prove that

$$
\begin{aligned}
& \mathbf{E}\left[\Upsilon^{t+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\Delta^{t}+1 . \\
& \text { For } k=\Theta\left(\Upsilon^{t}\right), \text { for constant fraction of } \\
& \text { steps } r \in[t, t+k], \mathbf{E}\left[\Delta^{r} \mid \mathfrak{F}^{t}\right]=\mathcal{O}(n) .
\end{aligned}
$$

$$
\mathbf{E}\left[\Upsilon^{t+k+1} \mid \mathfrak{F}^{t}\right] \leq \Upsilon^{t}-\frac{1}{n} \cdot \sum_{r=t}^{t+k} \mathbf{E}\left[\Delta^{r} \mid \mathfrak{F}^{t}\right]+(k+1)
$$

Bibliography I

- Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J. Comput. 29 (1999), no. 1, 180-200. MR 1710347
- Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars Nagel, Multiple-choice balanced allocation in (almost) parallel, Proceedings of 16th International Workshop on Approximation, Randomization, and Combinatorial Optimization (RANDOM'12) (Berlin Heidelberg), Springer-Verlag, 2012, pp. 411-422.
- P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350-1385. MR 2217150
- Ohad N. Feldheim and Ori Gurel-Gurevich, The power of thinning in balanced allocation, Electron. Commun. Probab. 26 (2021), Paper No. 34, 8. MR 4275960
- O. N. Feldheim, O. Gurel-Gurevich, and J. Li, Long-term balanced allocation via thinning, 2021, arXiv:2110.05009.
- O. N. Feldheim and J. Li, Load balancing under d-thinning, Electron. Commun. Probab. 25 (2020), Paper No. 1, 13. MR 4053904

Bibliography II

- G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J. Assoc. Comput. Mach. 28 (1981), no. 2, 289-304. MR 612082
- K. Iwama and A. Kawachi, Approximated two choices in randomized load balancing, Algorithms and Computation (Berlin, Heidelberg) (Rudolf Fleischer and Gerhard Trippen, eds.), Springer Berlin Heidelberg, 2005, pp. 545-557.
- R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542. MR 1407587
- D. Los and T. Sauerwald, Balanced allocations with incomplete information: The power of two queries, 2021, arXiv:2107.03916.
- Dimitrios Los and Thomas Sauerwald, Balanced allocations in batches: Simplified and generalized, 2022.
\qquad , Balanced allocations with the choice of noise, 2022.
\downarrow _ Tight bounds for repeated balls-into-bins, 2022.

Bibliography III

- Dimitrios Los, Thomas Sauerwald, and John Sylvester, The power of filling bins, 2022.
- M. Mitzenmacher, On the analysis of randomized load balancing schemes, Theory Comput. Syst. 32 (1999), no. 3, 361-386. MR 1678304
- M. Mitzenmacher, B. Prabhakar, and D. Shah, Load balancing with memory, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., IEEE, 2002, pp. 799-808.
- Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the $(1+\beta)$-choice process, Random Structures Algorithms 47 (2015), no. 4, 760-775. MR 3418914
- M. Raab and A. Steger, "Balls into bins"-a simple and tight analysis, Proceedings of 2nd International Workshop on Randomization and Approximation Techniques in Computer Science (RANDOM'98), vol. 1518, Springer, 1998, pp. 159-170. MR 1729169

