\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\newcommand {\tcbset }[1]{}\)
\(\newcommand {\tcbsetforeverylayer }[1]{}\)
\(\newcommand {\tcbox }[2][]{\boxed {\text {#2}}}\)
\(\newcommand {\tcboxfit }[2][]{\boxed {#2}}\)
\(\newcommand {\tcblower }{}\)
\(\newcommand {\tcbline }{}\)
\(\newcommand {\tcbtitle }{}\)
\(\newcommand {\tcbsubtitle [2][]{\mathrm {#2}}}\)
\(\newcommand {\tcboxmath }[2][]{\boxed {#2}}\)
\(\newcommand {\tcbhighmath }[2][]{\boxed {#2}}\)
\(\newcommand {\Batched }{b\text {-}{\rm B{\small ATCHED}}}\)
\(\newcommand {\OneChoice }{{\rm O{\small NE}}\text {-}{\rm C{\small HOICE}}}\)
\(\newcommand {\TwoChoice }{{\rm T{\small WO}}\text {-}{\rm C{\small HOICE}}}\)
\(\newcommand {\DSample }{d\text {-}{\rm S{\small AMPLE}}}\)
\(\newcommand {\TwoSample }{{\rm T{\small WO}}\text {-}{\rm S{\small AMPLE}}}\)
\(\newcommand {\Graphical }{{\rm G{\small RAPHICAL}}}\)
\(\newcommand {\DChoice }{d\text {-}{\rm C{\small HOICE}}}\)
\(\newcommand {\GBounded }{g\text {-}{\rm B{\small OUNDED}}}\)
\(\newcommand {\GMyopic }{g\text {-}{\rm M{\small YOPIC}}}\)
\(\newcommand {\RelativeThreshold }{{\rm R{\small ELATIVE}\text {-}T{\small RHESHOLD}}}\)
\(\newcommand {\MeanThinning }{{\rm M{\small EAN}\text {-}T{\small HINNING}}}\)
\(\newcommand {\TwoThinning }{{\rm T{\small WO}\text {-}T{\small HINNING}}}\)
\(\newcommand {\DThinning }{d\text {-}{\rm T{\small HINNING}}}\)
\(\newcommand {\Twinning }{{\rm T{\small WINNING}}}\)
\(\newcommand {\Threshold }{{\rm T{\small HRESHOLD}}}\)
\(\newcommand {\Thinning }{{\rm T{\small HINNING}}}\)
\(\newcommand {\KThreshold }{k\text {-}{\rm T{\small HRESHOLD}}}\)
\(\newcommand {\OnePlusBeta }{(1+\beta )}\)
\(\newcommand {\Packing }{{\rm P{\small ACKING}}}\)
\(\newcommand {\Quantile }{{\rm Q{\small UANTILE}}}\)
\(\newcommand {\Memory }{{\rm M{\small EMORY}}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\Oh }{\mathcal {O}}\)
\(\newcommand {\AdvTauDelay }{\tau \text {-}{\rm A{\small DV}}\text {-}{\rm D{\small ELAY}}}\)
\(\newcommand {\RandomTauDelay }{\tau \text {-}{\rm R{\small AND}}\text {-}{\rm D{\small ELAY}}}\)
\(\newcommand {\TauDelay }{\tau \text {-}{\rm D{\small ELAY}}}\)
\(\newcommand {\SigmaNoisyLoad }{\sigma \text {-}{\rm N{\small OISY}}\text {-}{\rm L{\small OAD}}}\)
\(\newcommand {\Heterogeneous }{{\rm H{\small ETEROGENEOUS}}}\)
\(\newcommand {\Gap }{\mathrm {Gap}}\)
\(\newcommand {\eps }{\epsilon }\)
The \(\GMyopic \) process is an adversarial version of \(\TwoChoice \), where whenever the load difference of the two bins is at most \(g\), it allocates randomly to one of the two samples. More formally, it can be described as follows:
The \(\GMyopic \) process:
Parameter: A threshold \(g \in \N \).
Iteration: At each step \(t = 1, 2, \ldots \),
-
• Sample two bins \(i_1\) and \(i_2\) uniformly at random.
-
• If \(|y_{i_1}^t - y_{i_2}^t| \leq g\), then allocate randomly to \(j \in \{i_1, i_2\}\).
-
• Otherwise, allocate to \(j \in \{i_1, i_2\}\) satisfying \(y_j^t = \min \{ y_{i_1}^t, y_{i_2}^t \}\).
This process is like a mild version of the \(\GBounded \) process, where the adversary allocates to the heavier bin, when given a chance. However, it was shown that the two processes have the same asymptotic gap of \(\Theta (\frac {g}{\log g} \cdot \log \log n)\).
.