\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\newcommand {\tcbset }[1]{}\)
\(\newcommand {\tcbsetforeverylayer }[1]{}\)
\(\newcommand {\tcbox }[2][]{\boxed {\text {#2}}}\)
\(\newcommand {\tcboxfit }[2][]{\boxed {#2}}\)
\(\newcommand {\tcblower }{}\)
\(\newcommand {\tcbline }{}\)
\(\newcommand {\tcbtitle }{}\)
\(\newcommand {\tcbsubtitle [2][]{\mathrm {#2}}}\)
\(\newcommand {\tcboxmath }[2][]{\boxed {#2}}\)
\(\newcommand {\tcbhighmath }[2][]{\boxed {#2}}\)
\(\newcommand {\Batched }{b\text {-}{\rm B{\small ATCHED}}}\)
\(\newcommand {\OneChoice }{{\rm O{\small NE}}\text {-}{\rm C{\small HOICE}}}\)
\(\newcommand {\TwoChoice }{{\rm T{\small WO}}\text {-}{\rm C{\small HOICE}}}\)
\(\newcommand {\DSample }{d\text {-}{\rm S{\small AMPLE}}}\)
\(\newcommand {\TwoSample }{{\rm T{\small WO}}\text {-}{\rm S{\small AMPLE}}}\)
\(\newcommand {\Graphical }{{\rm G{\small RAPHICAL}}}\)
\(\newcommand {\DChoice }{d\text {-}{\rm C{\small HOICE}}}\)
\(\newcommand {\GBounded }{g\text {-}{\rm B{\small OUNDED}}}\)
\(\newcommand {\GMyopic }{g\text {-}{\rm M{\small YOPIC}}}\)
\(\newcommand {\RelativeThreshold }{{\rm R{\small ELATIVE}\text {-}T{\small RHESHOLD}}}\)
\(\newcommand {\MeanThinning }{{\rm M{\small EAN}\text {-}T{\small HINNING}}}\)
\(\newcommand {\TwoThinning }{{\rm T{\small WO}\text {-}T{\small HINNING}}}\)
\(\newcommand {\DThinning }{d\text {-}{\rm T{\small HINNING}}}\)
\(\newcommand {\Twinning }{{\rm T{\small WINNING}}}\)
\(\newcommand {\Threshold }{{\rm T{\small HRESHOLD}}}\)
\(\newcommand {\Thinning }{{\rm T{\small HINNING}}}\)
\(\newcommand {\KThreshold }{k\text {-}{\rm T{\small HRESHOLD}}}\)
\(\newcommand {\OnePlusBeta }{(1+\beta )}\)
\(\newcommand {\Packing }{{\rm P{\small ACKING}}}\)
\(\newcommand {\Quantile }{{\rm Q{\small UANTILE}}}\)
\(\newcommand {\Memory }{{\rm M{\small EMORY}}}\)
\(\newcommand {\N }{\mathbb {N}}\)
\(\newcommand {\R }{\mathbb {R}}\)
\(\newcommand {\Oh }{\mathcal {O}}\)
\(\newcommand {\AdvTauDelay }{\tau \text {-}{\rm A{\small DV}}\text {-}{\rm D{\small ELAY}}}\)
\(\newcommand {\RandomTauDelay }{\tau \text {-}{\rm R{\small AND}}\text {-}{\rm D{\small ELAY}}}\)
\(\newcommand {\TauDelay }{\tau \text {-}{\rm D{\small ELAY}}}\)
\(\newcommand {\SigmaNoisyLoad }{\sigma \text {-}{\rm N{\small OISY}}\text {-}{\rm L{\small OAD}}}\)
\(\newcommand {\Heterogeneous }{{\rm H{\small ETEROGENEOUS}}}\)
\(\newcommand {\Gap }{\mathrm {Gap}}\)
\(\newcommand {\eps }{\epsilon }\)
The One-Choice Process
The simplest randomised balanced allocation process is the \(\OneChoice \) process. Here, each ball is allocate to a bin chosen independently and uniformly at random. As each allocation is done independently it means that there is no coordination required between the bins.
The \(\OneChoice \) process:
Iteration: At each step \(t = 1, 2, \ldots \),
-
• Sample one bin \(i^t\) uniformly at random.
-
• Allocate one ball to \(i^t\), i.e., \(x_{i^t}^{t+1} = x_{i^t}^t + 1\).
It is well-known that for \(m \leq n \log n\) the gap is w.h.p. \(\frac {m}{n} + \Theta (\frac {\log n}{\log (\frac {n}{m} \cdot \log n)})\) and for \(m > n \log n\) it is \(\frac {m}{n} + \Theta (\sqrt {\frac {m}{n} \cdot \log n})\).
.